3.12.33 \(\int \frac {x^8}{(a+b x^4)^{3/4}} \, dx\) [1133]

3.12.33.1 Optimal result
3.12.33.2 Mathematica [C] (verified)
3.12.33.3 Rubi [A] (verified)
3.12.33.4 Maple [F]
3.12.33.5 Fricas [F]
3.12.33.6 Sympy [C] (verification not implemented)
3.12.33.7 Maxima [F]
3.12.33.8 Giac [F]
3.12.33.9 Mupad [F(-1)]

3.12.33.1 Optimal result

Integrand size = 15, antiderivative size = 105 \[ \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx=-\frac {5 a x \sqrt [4]{a+b x^4}}{12 b^2}+\frac {x^5 \sqrt [4]{a+b x^4}}{6 b}-\frac {5 a^{3/2} \left (1+\frac {a}{b x^4}\right )^{3/4} x^3 \operatorname {EllipticF}\left (\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right ),2\right )}{12 b^{3/2} \left (a+b x^4\right )^{3/4}} \]

output
-5/12*a*x*(b*x^4+a)^(1/4)/b^2+1/6*x^5*(b*x^4+a)^(1/4)/b-5/12*a^(3/2)*(1+a/ 
b/x^4)^(3/4)*x^3*(cos(1/2*arccot(x^2*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*ar 
ccot(x^2*b^(1/2)/a^(1/2)))*EllipticF(sin(1/2*arccot(x^2*b^(1/2)/a^(1/2))), 
2^(1/2))/b^(3/2)/(b*x^4+a)^(3/4)
 
3.12.33.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.15 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.75 \[ \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx=\frac {-5 a^2 x-3 a b x^5+2 b^2 x^9+5 a^2 x \left (1+\frac {b x^4}{a}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},-\frac {b x^4}{a}\right )}{12 b^2 \left (a+b x^4\right )^{3/4}} \]

input
Integrate[x^8/(a + b*x^4)^(3/4),x]
 
output
(-5*a^2*x - 3*a*b*x^5 + 2*b^2*x^9 + 5*a^2*x*(1 + (b*x^4)/a)^(3/4)*Hypergeo 
metric2F1[1/4, 3/4, 5/4, -((b*x^4)/a)])/(12*b^2*(a + b*x^4)^(3/4))
 
3.12.33.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {843, 843, 768, 858, 807, 229}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {x^5 \sqrt [4]{a+b x^4}}{6 b}-\frac {5 a \int \frac {x^4}{\left (b x^4+a\right )^{3/4}}dx}{6 b}\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {x^5 \sqrt [4]{a+b x^4}}{6 b}-\frac {5 a \left (\frac {x \sqrt [4]{a+b x^4}}{2 b}-\frac {a \int \frac {1}{\left (b x^4+a\right )^{3/4}}dx}{2 b}\right )}{6 b}\)

\(\Big \downarrow \) 768

\(\displaystyle \frac {x^5 \sqrt [4]{a+b x^4}}{6 b}-\frac {5 a \left (\frac {x \sqrt [4]{a+b x^4}}{2 b}-\frac {a x^3 \left (\frac {a}{b x^4}+1\right )^{3/4} \int \frac {1}{\left (\frac {a}{b x^4}+1\right )^{3/4} x^3}dx}{2 b \left (a+b x^4\right )^{3/4}}\right )}{6 b}\)

\(\Big \downarrow \) 858

\(\displaystyle \frac {x^5 \sqrt [4]{a+b x^4}}{6 b}-\frac {5 a \left (\frac {a x^3 \left (\frac {a}{b x^4}+1\right )^{3/4} \int \frac {1}{\left (\frac {a}{b x^4}+1\right )^{3/4} x}d\frac {1}{x}}{2 b \left (a+b x^4\right )^{3/4}}+\frac {x \sqrt [4]{a+b x^4}}{2 b}\right )}{6 b}\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {x^5 \sqrt [4]{a+b x^4}}{6 b}-\frac {5 a \left (\frac {a x^3 \left (\frac {a}{b x^4}+1\right )^{3/4} \int \frac {1}{\left (\frac {a}{b x^2}+1\right )^{3/4}}d\frac {1}{x^2}}{4 b \left (a+b x^4\right )^{3/4}}+\frac {x \sqrt [4]{a+b x^4}}{2 b}\right )}{6 b}\)

\(\Big \downarrow \) 229

\(\displaystyle \frac {x^5 \sqrt [4]{a+b x^4}}{6 b}-\frac {5 a \left (\frac {\sqrt {a} x^3 \left (\frac {a}{b x^4}+1\right )^{3/4} \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\frac {\sqrt {a}}{\sqrt {b} x^2}\right ),2\right )}{2 \sqrt {b} \left (a+b x^4\right )^{3/4}}+\frac {x \sqrt [4]{a+b x^4}}{2 b}\right )}{6 b}\)

input
Int[x^8/(a + b*x^4)^(3/4),x]
 
output
(x^5*(a + b*x^4)^(1/4))/(6*b) - (5*a*((x*(a + b*x^4)^(1/4))/(2*b) + (Sqrt[ 
a]*(1 + a/(b*x^4))^(3/4)*x^3*EllipticF[ArcTan[Sqrt[a]/(Sqrt[b]*x^2)]/2, 2] 
)/(2*Sqrt[b]*(a + b*x^4)^(3/4))))/(6*b)
 

3.12.33.3.1 Defintions of rubi rules used

rule 229
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]) 
)*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 768
Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Simp[x^3*((1 + a/(b*x^4))^(3 
/4)/(a + b*x^4)^(3/4))   Int[1/(x^3*(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ 
[{a, b}, x]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 
3.12.33.4 Maple [F]

\[\int \frac {x^{8}}{\left (b \,x^{4}+a \right )^{\frac {3}{4}}}d x\]

input
int(x^8/(b*x^4+a)^(3/4),x)
 
output
int(x^8/(b*x^4+a)^(3/4),x)
 
3.12.33.5 Fricas [F]

\[ \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx=\int { \frac {x^{8}}{{\left (b x^{4} + a\right )}^{\frac {3}{4}}} \,d x } \]

input
integrate(x^8/(b*x^4+a)^(3/4),x, algorithm="fricas")
 
output
integral(x^8/(b*x^4 + a)^(3/4), x)
 
3.12.33.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.54 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.35 \[ \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx=\frac {x^{9} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{4}} \Gamma \left (\frac {13}{4}\right )} \]

input
integrate(x**8/(b*x**4+a)**(3/4),x)
 
output
x**9*gamma(9/4)*hyper((3/4, 9/4), (13/4,), b*x**4*exp_polar(I*pi)/a)/(4*a* 
*(3/4)*gamma(13/4))
 
3.12.33.7 Maxima [F]

\[ \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx=\int { \frac {x^{8}}{{\left (b x^{4} + a\right )}^{\frac {3}{4}}} \,d x } \]

input
integrate(x^8/(b*x^4+a)^(3/4),x, algorithm="maxima")
 
output
integrate(x^8/(b*x^4 + a)^(3/4), x)
 
3.12.33.8 Giac [F]

\[ \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx=\int { \frac {x^{8}}{{\left (b x^{4} + a\right )}^{\frac {3}{4}}} \,d x } \]

input
integrate(x^8/(b*x^4+a)^(3/4),x, algorithm="giac")
 
output
integrate(x^8/(b*x^4 + a)^(3/4), x)
 
3.12.33.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^8}{\left (a+b x^4\right )^{3/4}} \, dx=\int \frac {x^8}{{\left (b\,x^4+a\right )}^{3/4}} \,d x \]

input
int(x^8/(a + b*x^4)^(3/4),x)
 
output
int(x^8/(a + b*x^4)^(3/4), x)